Maths for Computing Assignment 5

1. (5 marks) Prove that if P and Q are longest paths (of the same length) in a connected graph, then P and Q have at least one vertex in common. Give a detailed proof.
2. (5 marks) Prove that if G is a disconnected graph, then \bar{G} is connected.
3. (5 marks) Let M be a maximal matching and M^{\prime} be any matching in a graph G. Prove that $|M| \geq\left|M^{\prime}\right| / 2$.
4. (5 marks) Prove that a tree always has more leaves than vertices of degree three.
5. (5 marks) Prove that Petersen graph does not contain two perfect matchings M and M^{\prime} such that $M \cap M^{\prime}=\varnothing$. You can use the results proved in class or tutorials without proving them again. (Hint: The length of the smallest cycle in Petersen graph is 5)
6. (5 marks) Petersen graph is non-planar. Prove it using Kuratowski's Theorem.
